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Abstract. I provide a simple derivation of the Buchalla—Safir bound on ~. I generalize it to the case where
an upper bound on the phase of the penguin pollution is assumed. I apply the Buchalla—Safir bound, and
its generalization, to the most recent data on C'P violation in B — 77 ™.

1 Introduction

C'P violation in B%-BY mixing and in the decays of those
mesons to 77~ is parametrized by

N
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where ¢/p relates to B}-BY mixing, A is the amplitude for
BY — nt7~, and A is the amplitude for B) — 77~ [1].
Two C P-violating quantities can be measured:
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In the standard model (SM), B =/ and the sine of 24 is
measured [2] through CP violation in BY/BY — ¥ Kg:

sin 28 = 0.736 = 0.049. (5)

In the SM 8 must be smaller than m/4, hence cos20 is
assumed to be positive.
Together with (4), I shall assume that, as in the SM,

A e 4z

4= (©
where ~y is another C' P-violating phase, which one would
like to be able to measure too. In the SM, 0 <y < 7w — (.
The parameter z represents the “penguin pollution”, an
annoying contribution from penguin diagrams which we
must somehow circumvent if we want to get at .

Buchalla and Safir (BS) [3] have found a solution to

the following problem. Suppose that

a

e-mail: balioQcftp.ist.utl.pt

(1) one has measured sin 26 and S,

(2) one has found that S > —sin 203,

(3) one assumes the validity of the SM, and

(4) one assumes that Rez > 0.

Is it then possible to find a lower bound on ~ stronger than
~v > 07 The solution to this problem, as given by BS; is

S—7+7V1-52
TS4+1—-+1-52

(7)
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where
sin 2

1—4/1—sin?23

All the square roots in this paper are, by definition, positive.

In this paper I provide a simple derivation of the BS
bound, which does not rely on any assumptions about the
quark mixing matrix. I also consider the realistic situation
where both S and C' have been measured; this allows one
to put a stronger bound on y than when one knows only S,
as was first pointed out by Botella and Silva [4]. Inspired
by the result, quoted by BS, of a computation of z yielding

(8)

T

argz = 0.15+£0.25, (9)

I furthermore consider the situation where one assumes
an upper bound on |arg z|. Finally, T apply the BS bound,
and its extensions, to the most recent measurements of S
and C.

2 The Buchalla—Safir bound
I define
T = Aexp (21/3)

= w' (10)
e +z
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Then,
1— |z
=—0, (11)
14 ||
and I furthermore define
21
1= =22 (12)
1+ ||
1 22
F = | x|2
1+ |z
2R
—1- = (13)
1+ ||
Clearly,
0<F<2 (14)
and
C*+I*+F*=2F. (15)
Solving (10) for z, one finds
By
z=—cosvy+ ;10 siny. (16)

This equation has an indeterminacy at the singular point
C=1=F=0<¢« x =1, ie. when siny = 0, for
arbitrary z.

From (16) it follows in particular that

F(cosy+ Rez) + Isiny =0. (17)
This equation has been first written down in [4]. It leads

to the bound
VE? 12

< 1
Rez| < Y1 (18)
The solution to (17) may be written in the form
T=E§+X (19)
where (by definition)
(1) ¢ is independent of Re z, and
(2) x =0o0r x =1 when Rez = 0.
One finds
cos& = L (20)
Nizrwek
F
Siné = ——, 21
S SR @)
and
F
siny — —LReZ (22)
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While £ is perfectly defined by (20) and (21), x as given
by (22) suffers from the twofold ambiguity

X =T —X. (23)

Assuming, as Buchalla and Safir have done, that Re z > 0,
we see from (21) and (22) that both £ and x are angles either
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of the first or of the second quadrant. The Buchalla—Safir
condition Re z > 0 implies the lower bound on v

v>¢€
i
VF2+ 12’

together with v < £ + 7 too. Notice that

— arccos

(24)

FdI —IdF

dé = —5—— 25
¢ F2 412 (25)
The inequality (24) provides a lower bound on v but,
unfortunately, one has to deal with discrete ambiguities.
These occur because we are able to measure C' but unable to
measure I and F'; rather, we only know sin 23 and S. Now,

2Re A ~ ~
I = ——— sin26+ Scos20, 26
1+ A2 (@)
2Re A ~ ~
F=1— ——— cos20+ Ssin24. (27
1+ A2 )

Assuming that sin 28, S, and C are known, there is a
fourfold ambiguity in I and F, since the signs of

2
2Red LTS (28)
L+ Al
cos2 = £1/1 —sin? 243 (29)
remain unknown. Using (25)—(29),
—S —sin23) (14 A

dc? 4(F?2 4+ 12)Re )

Thus, given C, S, and sin 23, there are in reality four

different angles ¢:

(1) &, in which both Re A and cos 23 are positive,

(2) &2, in which cos 26 is positive but Re A is negative,
(3) &3, in which both Re A and cos 203 are negative, and
(4) &4, in which Re \ is positive but cos 203 is negative.
Since F' remains invariant, and I changes sign, when Re A
and cos 2 change sign simultaneously, we find that &; =
n—¢; and &4 = w—&s. From the assumption that Re z > 0,
and taking into account the indeterminacy in the signs of
Re ) and cos 203, one can only deduce that v must lie in
between &, and & + 7 for all £k = 1,2, 3, and 4.

Let us now assume, with BS, the validity of the SM.
Then cos 23 is positive and only the values &; and & are
allowed for €. This produces the lower bound

v > min (£1,£2) . (31)

This lower bound is valid in the SM when C, S, and sin 23
are known. It still depends on C?, since &; and & contain
1 — C? — 52. Consideration of (30), however, shows that,
when S > —sin 23, &, decreases and &, increases with
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increasing C2. Moreover, at the maximum allowed value
of C2, i.e. when C? = 1 — S2, one has & = &, since in
general &1 and & only differ through the sign in front of
V1 —C? — 52 and that square root becomes zero when
C? =1 — S2. This immediately leads to the BS bound: if
S > —sin2f, then v > & (C? = 0). It can be shown [4]
that, though different in appearance, this bound coincides
with the one in (7).

One thus concludes that,
cos2(3 > 0, then

if one assumes that

(32)

v > & (C? =0) < S > —sin 28,
v >& (02:0) =8 < —sin20.

This may be put in a more transparent way if one defines

arcsin S
Y= 9 (33)
a=n—0F-7. (34)

The lower bound on v may then be rewritten as an upper
bound on «:

a<l_pep>-p
9 ¥ ¥ ) (35)

a<T+p &=p< 0.

The discontinuity of the bound at ¢ = —f should not come
out as a surprise. The point C' = 0, S = —sin 203 allows
the singularity C' = I = F' = 0 referred to earlier. When
C =1=F =0, v may be either 0 or 1, independently of
any assumption on z. Therefore no lower bound on v may
be derived if the experimentally allowed region for C' and
S includes that point.

It should be stressed that this derivation of the Buchal-
la—Safir bound on +, or on «, contains basically no physical
assumptions. Only (1)-(4) and (6), together with cos 23 >
0 and Rez > 0, are assumed. No assumptions are needed
about the physics contained in the decay amplitudes, about
the quark mixing matrix, or, indeed, about anything else;
the sole crucial assumption is Re z > 0. The Buchalla—Safir
bound is purely mathematical.

I now return to the general case where one does not
assume the SM. Then, v may be either positive or negative
and, from the assumption that Re z > 0, it is only possible
to produce a lower bound on ||, never on + itself. Indeed,
given the fourfold ambiguity in the determination of F
and I, and the twofold ambiguity in the determination
of x — see (23) — there are eight solutions to (17) for ~.
Since, when Re A and cos 23 change sign simultaneously, I
changes sign while F' does not change, it is obvious from (17)
that those eight solutions pair in four sets through the
transformation v — —~. Therefore, only a bound on |v| is
possible. Now, computing

tan? &; (02 = O) —tan® &, (02 = 0)

—4y/1—=524/1 —sin?283

(sin 26 — 5)2
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one finds that |tan§1 (C2 = 0)’ is always smaller than
|tan§2 (02 = ()) | Hence,

|y| > arctan |tan & (C*=0) |- (37)
Using again ¢ as defined in (33), one concludes that
> |8+, (38)

which is valid in any model provided Re z > 0 — and pro-
vided the basic equations (1)—(4) and (6) hold, of course.

3 Assuming an upper limit on |arg z|

In their work [3], Buchalla and Safir have quoted the result
of a computation (in the context of the standard model) of
z as yielding the result in (9). They have thereby justified
their assumption Re z > 0.! In this section I shall consider
a different assumption,

|cotarg z| > L, (39)

where L is some positive number. Clearly, this assumption is
complementary to Re z > 0; while Re z > 0, by itself alone,
leaves cot arg z completely arbitrary, the condition (39), by
itself alone, does not provide information on whether Re z
is positive or negative. If L is, for instance, taken equal to
1, then (39) is well justified by (9).

In order to find the consequences of the assumption (39),
I return to (16) and therefrom derive that

Ccotargz+ Fcoty+1=0. (40)
Hence,
—I1—-L|C|
|cotarg z| > L < coty < —F
—-I+L|C
or coty > %" (41)

Clearly, this condition makes smaller the range for y allowed
by Rez > 0 alone; that range, remember, is given by & <
v < & + m, where £ belongs either to the first or to the
second quadrant and cot{ = —I/F.

Let us now assume the validity of the SM. Theny < n—(
and the relevant bound on v following from (39) is the
lower bound

—I—L|C|

F
_ FV1—C2% = 52sin26 — Scos26 — L|C|
B 1—C2—=52cos23+ Ssin23

coty < (42)

This bound depends on the measured values of C, S, sin 23
and, besides, since cos 23 is positive in the SM, it depends
on the sign multiplying +/1 — C? — S2.

! The assumption Rez > 0 has also been recently used,
and its validity scrutinized, in [5]. Of course, solid bounds on
hadronic parameters are difficult or impossible to obtain from
first principles, and the validity of calculations like the one
yielding (9) is questionable.
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Fig. 1. The latest results of the Belle Collaboration for S and
C. The full line bounds the circle defined by the condition
C? + 8?2 < 1. Within that circle, the dashed line bounds the
region allowed by Belle at 68.3% C.L., the dot-dashed line
bounds the region allowed at 95.45% C.L., and the dotted line
bounds the region allowed at 99.73% C.L.

4 Application to the experimental results

The BS bound applies to the situation where S has been
measured while C' remains unknown but, in reality, both
the Belle and BABAR Collaborations are able to measure
S and C simultaneously and with comparable accuracy.
Unfortunately, the latest results made public by the two
groups do not quite coincide: while Belle [6] claims to have
observed large C' P violation in B — 77—, the BABAR
measurements [7] are consistent with no C'P violation at
all. T shall apply the lower bound on v given by the in-
equality (42) to the Belle results and, separately, to the
“average” results of Belle and BABAR given by the Heavy
Flavor Averaging Group [8]. I recall that, in inequality (42)
one must use, for each pair of values for S and C, the
sign in front of v/1 — C? — 52 yielding the less stringent
bound. I shall assume fixed values for sin23 = 0.736 and
cos2B = +/1—0.7362. For L I shall take the four val-
ues L = 0 — the case relevant for the BS bound, where
Re z > 0, but no lower bound on |cot arg z|, is assumed —
and L = cot 0.9, cot 0.65, and cot 0.4, corresponding to the
30, 20, and 1o bounds, respectively, following from (9).
Belle [6] measures S and C to be both negative and
not satisfying the constraint S? + C? < 1; enforcing the
latest constraint, the Belle Collaboration has presented the
allowed regions for C' and S displayed in Fig. 1. The point
C =0, S = —sin28 is disallowed at 99.9157% C.L., and
therefore setting a BS lower bound on -y is possible. I per-
formed scans of the allowed regions in the (C,S) plane
advocated by the Belle Collaboration. For each value of
the pair (C,S), and for each value of L, I computed the
corresponding lower bound on 7. The results are the fol-
lowing. If one takes the 68.3% C.L. domain of Belle, then
v >21.8°if L =0,y >42.3°if L = cot 0.9, v > 58.3° if
L = cot 0.65, and v > 93.6° if L = cot 0.4. When one uses
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the region allowed by Belle at 95.45% C.L., one obtains
v>123°if L =0, v > 24.1° if L = cot 0.9, v > 33.9° if
L = cot0.65, and v > 53.7° if L = cot 0.4. Considering at
last the 99.73% C.L. limits of Belle, one gets v > 3.6° if
L=0,7>6.6°1fL=cot0.9,v>8.9°%if L = cot0.65, and
v > 12.5° if L = cot 0.4; these very loose bounds reflect the
proximity to this region of the point C'= 0, S = —sin 20,
for which no lower bound on = is possible any more.

The Heavy Flavor Averaging Group has averaged the
latest results made public by the Belle and BABAR Col-
labrations, and advocates [§]

S =—0.61+0.14,

C =-0.37+0.11. (43)
Accordingly, I shall use
S e [-0.75, —0.47], (44)
C € [-0.48, —0.26]
at the 1o level, and
S € [-0.89, —0.33], (45)

C € [-0.59, —0.15]

at the 20 level. The corresponding results are the following.
If one uses the 1o domains for S and C in (44), then v >
68.4° if L = cot0.4, v > 54.5° if L = cot 0.65, v > 48.9°
if L =cot0.9, and v > 31.1° if L = 0. If one uses the less
stringent domains in (45), then v > 48.4° if L = cot 0.4,
v > 31.2° if L = cot0.65, v > 17.8° if L = cot 0.9, and
v > 8.6° if L = 0. The relevant bound on + is in general
obtained for the highest value of C' and the lowest value of
S in each domain, since that is the point closest to C' = 0,
S = —sin2p.

It is evident from the results above that assuming
|cot arg z| > L, with a non-zero L, may greatly improve the
lower bound on v that one obtains from the BS condition
Rez > 0 alone.

5 Conclusions

I have shown that the Buchalla—Safir lower bound on -~y
is a purely mathematical consequence of the assumption
Re z > 0; the latter assumption follows from a computation
of z within the standard model but, after that computation,
the derivation of the BS bound itself requires no physics. I
have improved the BS bound by assuming, above and be-
yond Re z > 0, a lower bound on |cot arg z|. I have empha-
sized the fact that the presence, within the experimentally
allowed region, of the point (S, C') = (—sin 23, 0), prevents
one from putting a lower bound on ~. I have applied the de-
rived bounds to the (S, C') domains advocated by the most
recent results made public by the Belle Collaboration and
by the Heavy Flavor Averaging Group.
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